CVBpy 14.0
SearchPredictorFactory Class Reference

Factory class for the generation of search predictors. More...

Inherits PredictorFactoryBase.

Public Member Functions

int num_classification_steps_min ()
 Minimum classification step count. More...
 
int sample_size_min ()
 Absolute minimum value for sample_size. More...
 
cvb.NumberRange scale_factor_range ()
 Acceptable scale factor range for search classifier training. More...
 
cvb.NumberRange scale_factor_range_default ()
 Default value for the scale factor range. More...
 
cvb.NumberRange singular_value_range_default ()
 Default value for the singular value range. More...
 
None use_settings_from_predictor (self, cvb.polimago.SearchPredictor clf)
 Copy the predictor generation settings from a predictor. More...
 
- Public Member Functions inherited from PredictorFactoryBase
int feature_resolution_default ()
 Default value for feature resolution. More...
 
cvb.NumberRange feature_resolution_range ()
 Valid range of feature resolution value. More...
 
str format_preprocessing_code (str input)
 Correct a preprocessing code to make sure that no invalid characters are in the code and the code does not exceed the maximum length. More...
 
float lambda_default ()
 Default value for lambda. More...
 
cvb.NumberRange lambda_range ()
 Acceptable scale factor range for search classifier training. More...
 
int preprocessing_max_length ()
 Maximum length of a preprocessing code (excluding the terminating zero). More...
 
List[str] preprocessing_valid_characters ()
 Characters that a preprocessing string may contain. More...
 

Properties

 angle_range = property
 cvb.AngleRange: Sets the range of angles to be covered during classifier training.
 
 extraction_radius = property
 float: The radius for extracting positive search instances. More...
 
 feature_resolution_rest = property
 int: The feature resolution (determines the size of the classification retina) for step 3 and up.
 
 feature_resolution_step_1_and_2 = property
 int: The feature resolution (determines the size of the classification retina) for search step 1 and 2.
 
 invariances = property
 int: The invariances to be used for generating the classifier (see cvb.polimago.InvarianceType).
 
 num_classification_steps = property
 int: The number of classification steps during search operation.
 
 sample_size = property
 int: The sample size that has been used in each training set.
 
 scale_range = property
 cvb.NumberRange: The range of scale factors to be covered during classifier training. More...
 
 singular_value_range = property
 cvb.NumberRange: The range of permissible singular values to be covered during classifier training. More...
 
- Properties inherited from PredictorFactoryBase
 lambda_ = property
 float: The regularization value to be used for generating the object. More...
 
 preprocessing = property
 str: Preprocessing code with which the object is to be generated.
 

Detailed Description

Factory class for the generation of search predictors.

Instantiates a SearchPredictorFactory object.

Member Function Documentation

◆ num_classification_steps_min()

int num_classification_steps_min ( )

Minimum classification step count.

Returns

int Minimum classification step count.

◆ sample_size_min()

int sample_size_min ( )

Absolute minimum value for sample_size.

Returns

int Sample size minimum.

◆ scale_factor_range()

cvb.NumberRange scale_factor_range ( )

Acceptable scale factor range for search classifier training.

Returns

cvb.NumberRange Acceptable range.

◆ scale_factor_range_default()

cvb.NumberRange scale_factor_range_default ( )

Default value for the scale factor range.

Returns

cvb.NumberRange Default range.

◆ singular_value_range_default()

cvb.NumberRange singular_value_range_default ( )

Default value for the singular value range.

Returns

cvb.NumberRange Default range.

◆ use_settings_from_predictor()

None use_settings_from_predictor (   self,
cvb.polimago.SearchPredictor  clf 
)

Copy the predictor generation settings from a predictor.

Parameters

clf : cvb.polimago.SearchPredictor Predictor to take the settings from.

Property Documentation

◆ extraction_radius

extraction_radius = property
static

float: The radius for extracting positive search instances.

The unit size is the size of the feature window, i.e. a value of 0.5 means that positive samples can be extracted from withing a range of +/- Feature Window Width and +/- Feature Window Height around each trained instance. Smaller values will necessitate a finer search grid but may yield better results on difficult search tasks.

◆ scale_range

scale_range = property
static

cvb.NumberRange: The range of scale factors to be covered during classifier training.

Only meaningful if the invariance type RotationScaleTranslation has been set.

◆ singular_value_range

singular_value_range = property
static

cvb.NumberRange: The range of permissible singular values to be covered during classifier training.

Only meaningful if the invariance type AffineGroup has been set.