
NEW CVB API - .NET - C++ - PYTHON
A NEW APPROACH TO MODERN
APPLICATION DEVELOPMENT
WITH COMMON VISION BLOX

ANDREAS RITTINGER, IMAGE ACQUISITION,
STEMMER IMAGING

1. Retrospect 1997

2. The C-API of CVB

3. Design Goals for a New API

4. Object Oriented Philosophy

5. Current Status

6. Examples

7. Demonstration

8. Future Prospects

CONTENT

RETROSPECT 1997

Autumn 1997: Common Vision Concept

(later on renamed Common Vision Blox) is

publicly presented for the first time on the

Vision Show 1997 in Stuttgart

RETROSPECT 1997

Autumn 1997: Common Vision Concept

(later on renamed Common Vision Blox) is

publicly presented for the first time on the

Vision Show 1997 in Stuttgart

… and this is what else 1997 had in store:

space probe Cassini starts its mission

comet Hale-Bopp passes Earth

Pathfinder lands on Mars

Garri Kasparov loses against Deep Blue

THE C-API OF CVB

The environment in the mid 90’s significantly

influenced the design of the API of Common

Vision Concept (CVC)

Procedural/imperative programming is still predominant in the

beginning and mid 90’s. Object oriented programming only just

started its rise to significance.

CVC is supposed to be usable with the most popular

programming languages and development environments for the

PC, which were by and large:

(see e. g. https://www.complang.tuwien.ac.at/anton/comp.lang-statistics/)

• Pascal/Delphi (3)

• (Visual) Basic (5.0)

• (Visual) C/C++ (5.0)

THE C-API OF CVB

Programming libraries (DLLs) that export functions declared as
extern "C" __stdcall ...

are usable with all these languages and development environments

Use of these DLLs is simple, not least because they shield the caller from the callee’s

dependencies (unlike e.g. class DLLs) and because the interface is limited to few and

elementary data types.

They are also usable in a number of other environments (like e.g. LabVIEW, Matlab, …)

Adaption to the .NET runtime released in 2001 also was straightforward and CVB is

therefore available for C# and VB.NET programmers starting in 2002.

ActiveX Controls for GUI components (e.g. interactive display), also usable with all the

relevant environments back then, complete the product.

THE C-API OF CVB

In summary, the goal has been attained: Common Vision Blox, launched in the 2nd half of the

90’s, is a machine vision SDK which…

… is state of the art.

… comes with powerful algorithms for image

analysis and pattern recognition which 20 years on

are still competitive.

… allows for hardware-independent coding of

image acquisition.

… is usable with all the currently popular

development tools.

2018 – THE WORLD KEEPS
TURNING…

The basic parameters in 2018 differ notably from those 21 years ago.

Object oriented development is the standard. Graduates usually have learned the relevant

languages and techniques and to this target audience a purely procedural API looks alien and

uncomely.

With the .NET framework taking root, the replacement of VB 6.0 by VB.NET and the 64 bit

versions of Windows becoming mainstream ActiveX controls have lost a lot of their former

significance and support for them in development environments is crumbling. ActiveX can no

longer be considered forward-looking.

2018 – THE WORLD KEEPS
TURNING…

The basic parameters in 2018 differ notably from those 21 years ago.

The availability of powerful low-cost

embedded computers promotes

diversity of the hardware and

operating system platforms for

machine vision applications.

Technologies with cross-platform

applicability (like e.g. C++, Python,

C#) are becoming more important.

A new approach is needed to

prepare CVB for a new generation of

developers and applications.

AND WHILE WE’RE AT IT…

… we might as well address some of the rough edges and introduce

improvements that were hitherto impossible to do without breaking

backward compatibility of the API.

Differing error reporting in different modules (bool, HRESULT, integers).

Partly confusing call semantics, e.g.:
LoadImageFile(const char szName, IMG& img)
LoadSF(SF& sf, const char szName)

Object handles that are not type safe (IMG, CLF, RESULTS, SF, … ► at the end of the day all void*).

Identical concepts appearing under different names („Locality“, „Separation“, „MinDist“).

The COM-way of doing reference counting (ShareObject/ReleaseObject) which remained an

enigma for many users and is one of the most common sources of mistakes when using CVB.

Each module using its own result containers (PIXELLIST, RESULTS, SEARCHRESULTS, etc.) for lack of

a generic container that was usable with all supported languages.

DESIGN GOALS FOR A NEW API

What does an API which addresses the aforementioned items and

modernizes CVB need to look like?

The new API needs to be built as a lean and efficient wrapper on top of the C-API.

It consistently uses objet oriented idioms and thereby…

• … is easier to use and provides a simpler entry into the SDK.

• … can be more easily integrated in common OOP patterns.

It is to be “natively” embedded in the respective environment and its conventions:

• Working with CVB.NET should feel no different than working with the CLR

• Working with CVB++ should feel no different than working with STL/Boost/Qt/…

• Working with CVBpy should feel no different than working with common Python modules.

This may in fact have priority over preserving identical names as the C-API and between

CVB.Net, CVB++ and CVBpy.

But: Concepts that are specific to CVB will be modeled consistently between the APIs.

OBJECT ORIENTED
PHILOSOPHY

The basic classes the wrappers provide

Device Factory

Device
(vin)

Device
(video)

Device
(emu)

Stream
Node
Map

Device
(non

streaming)

Stream

Node
Ring

Buffer
Image

Plane Plane

Node
Map

Node

Interfaces

LIFE TIME MANAGEMENT

How to actually close your device and free all depended

resources?

Smart Pointers in C++

• Closing a device (run out of scope)

• … does decrease your recount – only closes if ref count is zero.

• … dependent objects will keep the device alive and open

• … accessing them will work as long as you own a reference.

References in .NET and Python

• Closing a device (dispose or with/del)

• … you can easily make sure that the device is closed

• … will free all dependent Objects Node Maps, Streams Images etc.

• … accessing them will throw

ERROR HANDLING WITH
EXCEPTIONS

What does an API which addresses the aforementioned items and

modernizes CVB need to look like?

No error codes, no accidental ignoring errors.

• … only if you really want to using Try versions where an applicable

Live management, destructors do cleanup

• No leaks caused by errors

• No gotos

Exception carry more information

• No lookup of error codes is required

• Verbose error messages

Much easier to implement…

SIMPLE ACQUISITION C-API

int main(int, char* [])
{
int i;
IMG img;

LoadImageFile("GenICam.vin", img);

G2Grab(img);
for (i = 0; i < 10; ++i)
{
G2Wait(img);
printf("acquired image: %i", i);

}

G2Freeze(img, 0);

ReleaseObject(img);
}

SIMPLE ACQUISITION C-API

int main(int, char* [])
{

int i = 0;
IMG img = NULL;
cvbres_t res = 0;

if (!LoadImageFile("GenICam.vin", img))
{

printf("LoadImageFile failed");
return -1;

}

res = G2Grab(img);
if (res < 0)
{

printf("G2Grab failed: %i", res);
ReleaseObject(img);
return res;

}

for (i = 0; i < 10; ++i)
{

res = G2Wait(img);
if (res < 0)
{

printf("G2Wait failed: %i", res);
G2Freeze(img, 1); // TODO find out what this means
ReleaseObject(img);
return res;

}
printf("acquired image: %i", i);

}…

SIMPLE ACQUISITION CVB++

int main(int, char* [])
{
auto device =
Cvb::DeviceFactory::Open(L"GenICam.vin");

auto stream = device->Stream();

stream->Start();
for (int i = 0; i < 0; ++i)
{
auto waitResult = stream->WaitFor(std::chrono::milliseconds(1000));
std::cout << "acquired image: " << i << std::endl;

}
stream->Abort();

}

SIMPLE ACQUISITION CVB++

int main(int, char* [])
{

try
{

auto device =
Cvb::DeviceFactory::Open(L"GenICam.vin");

auto stream = device->Stream(0);

stream->Start();
for (int i = 0; i < 0; ++i)
{

auto waitResult = stream->WaitFor(std::chrono::milliseconds(1000));
std::cout << "acquired image: " << i << std::endl;

}
stream->Abort();

}
catch (const std::exception& err)
{

std::cout << err.what() << std::endl;
}

}

DESIGN GOALS FOR A
NEW API

Consistent use of smart pointers/reference types makes the “manual” reference counting

obsolete, eliminating the most common source of errors.

Consistent use of the containers typically used in the supported languages
(System.Collections.Generic.IEnumerable<> and the likes for C#, std::vector<>
for C++, [] for Python) simplifies and unifies use of result lists.

Error handling generally happens through exceptions, complemented by alternative Try-
functions where it makes sense ► errors in the program flow will need to be ignored actively.

At least during the introductory phase there are no stability commitments with regard to the
API definition – corrections and refactoring are at this stage very likely and client code will
need to be adapted when they occur.

CURRENT STATUS

The current state is available in the recently

launched Common Vision Blox User Forum.

(generally: https://forum.commonvisionblox.com

CVB.NET, CVB++ and CVBpy: https://goo.gl/hSiF3h)

Installers for CVB.NET, CVB++ and CVBpy including

documentation and tutorials will updated approximately

on a weekly basis.

Support: Currently only via the User Forum.

Requirements:

BESCHREIBUNG ANFORDERUNGEN

CVB.Net .NET Framework 4.0 or Core 2.0

CVB++ C++11-capable compiler (vc14, gcc5)

CVBpy Python (3.5, 3.6)

CURRENT STATUS

Structure of CVB.ET

C
V

C
Im

g
.d

ll

C
V

C
D

ri
ve

r.
d

ll

C
V

C
U

til
iti

e
s.

dl
l

C
V

C
D

is
p.

d
ll

C
V

F
o

un
da

tio
n.

dl
l

e
tB

a
ye

rT
o

R
G

.d
ll

C
V

C
E

dg
e

.d
ll

L
ig

h
tM

e
te

r.
dl

l

C
V

C
F

ile
.d

ll

C
V

G
e

nA
p

i.d
ll

C
V

C
xx

x.
op

i

M
in

os
C

V
C

.d
ll

(M
a

nt
o.

dl
l)

*

P
ol

im
ag

o.
d

ll

C
V

C
B

ar
co

de
.d

ll

S
il.

d
ll

M
ov

ie
2

.d
ll

S
F.

d
ll

S
te

m
m

e
r.

C
vb

.d
ll

S
te

m
m

e
r.

C
vb

.F
o

rm
s.

dl
l

S
te

m
m

e
r.

C
vb

.A
u

x.
dl

l

S
te

m
m

e
r.

C
vb

.F
o

un
d

at
io

n
.d

ll

S
te

m
m

e
r.

C
vb

.M
in

os
.d

ll

S
te

m
m

e
r.

C
vb

.M
a

nt
o.

dl
l*

S
te

m
m

e
r.

C
vb

.P
o

lim
a

go
.d

ll

S
te

m
m

e
r.

C
vb

.B
a

rc
od

e.
dl

l

S
te

m
m

e
r.

C
vb

.S
a

m
pl

eD
B

.d
ll

S
te

m
m

e
r.

C
vb

.M
o

vi
e2

.d
ll

S
te

m
m

e
r.

C
vb

.S
h

ap
e

F
in

d
er

.d
ll

S
te

m
m

e
r.

C
vb

.W
pf

.d
ll

S
te

m
m

e
r.

C
vb

.E
xt

e
ns

io
ns

.d
ll

Image Manager Foundation Tools

C
V

G
e

nA
p

iG
rid

.d
ll

CURRENT STATUS

Structure of CVB++

C
V

C
Im

g
.d

ll

C
V

C
D

ri
ve

r.
d

ll

C
V

C
U

til
iti

e
s.

dl
l

C
V

C
F

ile
.d

ll

C
V

G
e

nA
p

i.d
ll

CVB++
(header-only lib)

Image Manager

CURRENT STATUS

Structure of CVBpy

C
V

C
Im

g
.d

ll

C
V

C
D

ri
ve

r.
d

ll

C
V

C
U

til
iti

e
s.

dl
l

C
V

C
F

ile
.d

ll

C
V

G
e

nA
p

i.d
ll

CVB++
(header-only lib)

Image Manager

_cvb.pyd

__init__.py

_foundation.pyd

_movie2.pyd

EXAMPLES

CVB.NET: Crosshair Overlay Plugin on Forms-Display (i.e. based on the CVCDisp.dll)

C-API (using CVDisplay.ocx):

axCVImage1.Load(@"%CVB%\Tutorial\Clara.bmp");
axCVDisplay1.Image = axCVImage1.Image;
Cvb.Image.PIXELLIST pixelList = Cvb.Image.CreatePixelList(3);
var tmp = new double[3];
tmp[0] = x;
tmp[1] = y;
Cvb.Image.AddPixel(pixelList, tmp);
tmp[0] = 20;
tmp[1] = 20;
Cvb.Image.AddPixel(pixelList, tmp);
Cvb.Plugin.TPenStylePlugInData tpenStylePlugInData =

new Cvb.Plugin.TPenStylePlugInData(Cvb.Plugin.TPenStyle.SOLID, 3);
axCVdisplay1.AddOverlayObjectNET("Crosshair",

"Hello world", canDrag, xorOnly,
Cvb.Plugin.ColorToInt32(Color.Red),
Cvb.Plugin.ColorToInt32(Color.Yellow), filled, id,
pixelList.ToInt64(), tpenStylePlugInData.ToIntPtr());

Cvb.Image.ReleaseObj(pixelList);

CVB.NET:

display.Image = new Stemmer.Cvb.Image(@"%CVB%\Tutorial\Clara.bmp");
display.Overlays.Add(

new CrossHairOverlay("Hello world", canDrag, Color.Red,
xorOnly, new Point(x, y), new Size(20, 20), DashStyle.Solid, 3));

EXAMPLES

CVB.NET: Show Minos search results

Additionally: All search result properties are

directly visible in the debugger or e.g. in a

property grid.

C-API (using CVDisplay.ocx):

TArea aoi;
MaxImageArea(reinterpret_cast(m_cvDisp.GetImage()), aoi);
RESULTS results = nullptr;
SearchAll(clf, reinterpret_cast(m_cvDisp.GetImage()), 0,

density, aoi, locality, 255, results);
m_cvDisp.RemoveAllLabels();
for (int i = 0; i < SearchResultsCount(results); i++)
{

double dQual, dXPos, dYPos, dDX, dDY;
char* pstrName;
cvbval_t lAID;
SearchResult(results, i, dQual, dXPos, dYPos, dDX, dDY, pstrName, lAID);
m_cvDisp.AddLabel(pstrName, FALSE, RGB(255, 0, 0), i,

static_cast<long>(dXPos), static_cast<long>(dYPos));
}
ReleaseResults(results);

CVB.NET:

var results = clf.SearchAll(display.Image.Planes[0], locality);
display.Overlays.Clear();
foreach (var res in results)

display.Overlays.Add(new DisplayLabel(res.Name, false,
Color.Red, res.Position.ToPoint(), res));

EXAMPLES

CVB.NET: Detailed information about image and device properties (including all possibly

available node maps) is accessible in the debugger (read- and writeable!)

For comparison: With the C-API only _dev.Handle = 0x0000017818e5dc10 would be visible.

EXAMPLES

CVB.NET: Binaries are usable cross platform as long as they do not need a GUI. Currently

this feature is limited to Windows (Win32 and x64) and 32 bit Linux (Intel & ARM

architecture); extension to 64 Bit (Intel & ARM) to follow later on…
static void Main(string[] args)
{
try {
var dev = DeviceFactory.Open(args[0]);
if (dev.NodeMaps.Count == 0) {
Console.WriteLine("No node map.");
return;

}
var nodeMap = dev.NodeMaps[NodeMapNames.Device];
Console.WriteLine("Camera Model: " + nodeMap["ModelName"]);
Console.WriteLine("Camera Vendor: " + nodeMap["VendorName"]);
Console.WriteLine("Serial Number: " + nodeMap["Std::DeviceID"]);
dev.Dispose();

}
catch (Exception ex) {
Console.WriteLine("Operation failed. Hint: " + ex.Message);

}
}

EXAMPLES

CVB++ & Qt: Cross platform capable applications with GUI become possible (all currently

supported platforms) int main(int argc, char* argv[])
{
try
{
QApplication app(argc, argv);

Cvb::String path(CVB_LIT("%CVB%/drivers/GenICam.vin"));

// expand environment variables in path
path = Cvb::ExpandPath(path);

// open a device
auto device = Cvb::DeviceFactory::OpenDevice(path);

// connect the device image to the UI
Cvb::ImageView view;
view.Refresh(device->DeviceImage(), Cvb::AutoRefresh::On);
view.show();

// get the first stream of the device
auto stream = device->Stream();

// create an acquisition handler for that stream and run it
auto streamHandler = Cvb::SingleStreamHandler::Create(stream);
streamHandler->Run();

return app.exec();
}
catch (const std::exception& error)
{
std::cout << error.what() << std::endl;

}
}

EXAMPLES

CVBpy: Usable in all commonly used Python environments. Visualization via pyplot.

EXAMPLES

CVBpy: Similar to CVB.Net the image

and device information is directly visible

in the debugger.

DEMO

CVBpy: IPython

REPL Read-eval-print-loop

FUTURE PROSPECTS

Increase the feature and test coverage for all

three programming languages.

Extend the binary compatibility for CVB.Net to the 64 Bit Linux platforms

(probably in CVB 14) and adapt to the .NET Core 2.0 Standard.

Establish a cross platform available display possibility for CVB.NET.

► Enough work to be done until the next CVB User Group Meeting

The C-API will not be made obsolete by these efforts! It rather will continue to be the basis for

CVB.NET, CVB++ and CVBpy und will be maintained and supported accordingly!

The next steps for CVB.Net, CVB++ and CVBpy

THANK YOU VERY MUCH
FOR YOUR ATTENTION
Your contact:
Andreas Rittinger

STEMMER IMAGING GmbH
+49 89 80902-745
a.rittinger@stemmer-imaging.de
https://www.stemmer-imaging.de
https://forum.commonvisionblox.com

© Copyright STEMMER IMAGING. Alle Rechte vorbehalten. Alle Texte, Bilder, Graphiken, Ton-, Video- und Animationsdateien
sowie ihre Arrangements unterliegen dem Urheberrecht und anderen Gesetzen zum Schutz geistigen Eigentums. Sie dürfen weder
für Handelszwecke oder zur Weitergabe kopiert, noch verändert und auf anderen Web-Sites verwendet werden. Einige STEMMER
IMAGING-Seiten enthalten auch Bilder, die dem Urheberrecht derjenigen unterliegen, die diese zur Verfügung gestellt haben.

